This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
cs-401r:assignment-1 [2014/09/09 20:56] ringger [Question 3: Useful theorems in probability theory] |
cs-401r:assignment-1 [2014/09/24 15:40] (current) cs401rPML [Question 3: Useful theorems in probability theory] added link to example proofs |
||
---|---|---|---|
Line 40: | Line 40: | ||
(Adapted from: Manning & Schuetze, p. 59, exercise 2.1) | (Adapted from: Manning & Schuetze, p. 59, exercise 2.1) | ||
- | Use the [[Set Theory Identities]] and [[Axioms of Probability Theory]] to prove each of the following five statements. Develop your proof first in terms of sets and then translate into probabilities; use set theoretic operations on sets and arithmetic operators on probabilities. Be sure to apply [[Proofs|good proof technique]]: justify each step in your proofs; set up your proofs in two-column format, with each step showing a statement on the left and a justification on the right. Remember that in order to invoke an axiom as justification, you must first satisfy the conditions / pre-requisites of the axiom. | + | Use the [[Set Theory Identities]] and [[Axioms of Probability Theory]] to prove each of the following five statements. Develop your proof first in terms of sets and then translate into probabilities; use set theoretic operations on sets and arithmetic operators on probabilities. Be sure to apply [[Proofs|good proof technique]]: justify each step in your proofs; set up your proofs in two-column format, with each step showing a statement on the left and a justification on the right. Remember that in order to invoke an axiom as justification, you must first satisfy the conditions / pre-requisites of the axiom. See the proofs on the [[example_proofs|example proofs page]]. |
# $P(B - A) = P(B) - P(A \cap B)$ | # $P(B - A) = P(B) - P(A \cap B)$ | ||
#* Note that inside the $P(\cdot)$, the '$-$' operator indicates set difference. | #* Note that inside the $P(\cdot)$, the '$-$' operator indicates set difference. |