Programming Lab #1

- Implement AES
- Use the FIPS 197 spec as your guide
 - Avoid looking at code on the Internet
 - Challenge yourself to implement the algorithm based on sources mentioned in the lab specification
 - The standard provides programming language independent pseudo-code
 - 20 pages in the spec of complete, step by step debugging information to check your solution
Finite Fields

- AES uses the finite field GF(2^8)
 - $b_7x^7 + b_6x^6 + b_5x^5 + b_4x^4 + b_3x^3 + b_2x^2 + b_1x + b_0$
 - $\{b_7, b_6, b_5, b_4, b_3, b_2, b_1, b_0\}$

- Byte notation for the element: $x^6 + x^5 + x + 1$
 - $0x^7 + 1x^6 + 1x^5 + 0x^4 + 0x^3 + 0x^2 + 1x + 1$
 - $\{01100011\}$ – binary
 - $\{63\}$ – hex

- Has its own arithmetic operations
 - Addition
 - Multiplication
Finite Field Arithmetic

• Addition (XOR)
 o \((x^6 + x^4 + x^2 + x + 1) + (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2\)
 o \(\{01010111\} \oplus \{10000011\} = \{11010100\}\)
 o \(\{57\} \oplus \{83\} = \{d4\}\)

• Multiplication is tricky
Finite Field Multiplication (\(\cdot\))

\[(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) = x^{13} + x^{11} + x^9 + x^8 + x^7 + x^5 + x^3 + x + x^6 + x^4 + x^2 + x + 1\]

These cancel out

\[= x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1\]

and

\[x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 \mod (x^8 + x^4 + x^3 + x + 1) = x^7 + x^6 + 1.\]
Efficient Finite Field Multiply

• There’s a better way
 o \textit{xtime()} – very efficiently multiplies its input by \{02\}
 • This is the same as multiplying a polynomial by \(x\)

• Multiplication by higher powers can be accomplished through repeated applications of \textit{xtime()}
Efficient Finite Field Multiply

Example: \(\{57\} \times \{13\} \)

\[
\begin{align*}
\{57\} \times \{02\} &= \text{xtime}(\{57\}) = \{ae\} \\
\{57\} \times \{04\} &= \text{xtime}(\{ae\}) = \{47\} \\
\{57\} \times \{08\} &= \text{xtime}(\{47\}) = \{8e\} \\
\{57\} \times \{10\} &= \text{xtime}(\{8e\}) = \{07\}
\end{align*}
\]

\[
\begin{align*}
\{57\} \times \{13\} &= \{57\} \times (\{01\} \oplus \{02\} \oplus \{10\}) \\
&= \{57\} \times (\{01\} \oplus \{02\} \oplus \{10\}) \\
&= (\{57\} \times \{01\}) \oplus (\{57\} \times \{02\}) \oplus (\{57\} \times \{10\}) \\
&= \{57\} \oplus \{ae\} \oplus \{07\} \\
&= \{fe\}
\end{align*}
\]
AES Parameters

- **Nb** – Number of columns in the State
 - For AES, Nb = 4

- **Nk** – Number of 32-bit words in the Key
 - For AES, Nk = 4, 6, or 8

- **Nr** – Number of rounds (function of Nb and Nk)
 - For AES, Nr = 10, 12, or 14
AES methods

- Convert to state array

- Transformations (and their inverses)
 - AddRoundKey
 - SubBytes
 - ShiftRows
 - MixColumns

- Key Expansion
Inner Workings

- See Flash demo URL on course Lectures pages